7,957 research outputs found

    Anderson localization of pairs in bichromatic optical lattices

    Full text link
    We investigate the formation of bound states made of two interacting atoms moving in a one dimensional (1D) quasi-periodic optical lattice. We derive the quantum phase diagram for Anderson localization of both attractively and repulsively bound pairs. We calculate the pair binding energy and show analytically that its behavior as a function of the interaction strength depends crucially on the nature -extended, multi-fractal, localized- of the single-particle atomic states. Experimental implications of our results are discussed.Comment: final revised version with more explanations, 4 pages, 3 figure

    Ligula intestinalis (Cestoda: Pseudophyllidea): an ideal fish-metazoan parasite model?

    Get PDF
    Since its use as a model to study metazoan parasite culture and in vitro development, the plerocercoid of the tapeworm, Ligula intestinalis, has served as a useful scientific tool to study a range of biological factors, particularly within its fish intermediate host. From the extensive long-term ecological studies on the interactions between the parasite and cyprinid hosts, to the recent advances made using molecular technology on parasite diversity and speciation, studies on the parasite have, over the last 60 years, led to significant advances in knowledge on host-parasite interactions. The parasite has served as a useful model to study pollution, immunology and parasite ecology and genetics, as well has being the archetypal endocrine disruptor

    Stability control of nonlinear micromechanical resonators under simultaneous primary and superharmonic resonances

    Get PDF
    Fast effects of a slow excitation on the main resonance of a nonlinear micromechanical resonator are analytically and experimentally investigated. We show, in particular, how the bifurcation topology of an undesirable unstable behavior is modified when the resonator is simultaneously actuated at its primary and superharmonic resonances. A stabilization mechanism is proposed and demonstrated by increasing the superharmonic excitation

    ‘Next-Generation’ surveillance: an epidemiologists’ perspective on the use of molecular information in food safety and animal health decision-making

    Get PDF
    Advances in the availability and affordability of molecular and genomic data are transforming human health care. Surveillance aimed at supporting and improving food safety and animal health is likely to undergo a similar transformation. We propose a definition of ‘molecular surveillance’ in this context and argue that molecular data are an adjunct to rather than a substitute for sound epidemiological study and surveillance design. Specific considerations with regard to sample collection are raised, as is the importance of the relation between the molecular clock speed of genetic markers and the spatiotemporal scale of the surveillance activity, which can be control- or strategy-focused. Development of standards for study design and assessment of molecular surveillance system attributes is needed, together with development of an interdisciplinary skills base covering both molecular and epidemiological principles

    Limits of feedback control in bacterial chemotaxis

    Full text link
    Inputs to signaling pathways can have complex statistics that depend on the environment and on the behavioral response to previous stimuli. Such behavioral feedback is particularly important in navigation. Successful navigation relies on proper coupling between sensors, which gather information during motion, and actuators, which control behavior. Because reorientation conditions future inputs, behavioral feedback can place sensors and actuators in an operational regime different from the resting state. How then can organisms maintain proper information transfer through the pathway while navigating diverse environments? In bacterial chemotaxis, robust performance is often attributed to the zero integral feedback control of the sensor, which guarantees that activity returns to resting state when the input remains constant. While this property provides sensitivity over a wide range of signal intensities, it remains unclear how other parameters affect chemotactic performance, especially when considering that the swimming behavior of the cell determines the input signal. Using analytical models and simulations that incorporate recent experimental evidences about behavioral feedback and flagellar motor adaptation we identify an operational regime of the pathway that maximizes drift velocity for various environments and sensor adaptation rates. This optimal regime is outside the dynamic range of the motor response, but maximizes the contrast between run duration up and down gradients. In steep gradients, the feedback from chemotactic drift can push the system through a bifurcation. This creates a non-chemotactic state that traps cells unless the motor is allowed to adapt. Although motor adaptation helps, we find that as the strength of the feedback increases individual phenotypes cannot maintain the optimal operational regime in all environments, suggesting that diversity could be beneficial.Comment: Corrected one typo. First two authors contributed equally. Notably, there were various typos in the values of the parameters in the model of motor adaptation. The results remain unchange

    Quantum ballistic experiment on antihydrogen fall

    Full text link
    We study an interferometric approach to measure gravitational mass of antihydrogen. The method consists of preparing a coherent superposition of antihydrogen quantum state localized near a material surface in the gravitational field of the Earth, and then observing the time distribution of annihilation events followed after the free fall of an initially prepared superposition from a given height to the detector plate. We show that a corresponding time distribution is related to the momentum distribution in the initial state that allows its precise measurement. This approach is combined with a method of production of a coherent superposition of gravitational states by inducing a resonant transition using oscillating gradient magnetic field. We estimate an accuracy of measuring the gravitational mass of antihydrogen atom which could be deduced from such a measurement.Comment: arXiv admin note: text overlap with arXiv:1403.478

    Casimir-Polder shifts on quantum levitation states

    Full text link
    An ultracold atom above a horizontal mirror experiences quantum reflection from the attractive Casimir-Polder interaction, which holds it against gravity and leads to quantum levitation states. We analyze this system by using a Liouville transformation of the Schr\"odinger equation and a Langer coordinate adapted to problems with a classical turning point. Reflection on the Casimir-Polder attractive well is replaced by reflection on a repulsive wall and the problem is then viewed as an ultracold atom trapped inside a cavity with gravity and Casimir-Polder potentials acting respectively as top and bottom mirrors. We calculate numerically Casimir-Polder shifts of the energies of the cavity resonances and propose a new approximate treatment which is precise enough to discuss spectroscopy experiments aiming at tests of the weak equivalence principle on antihydrogen. We also discuss the lifetimes by calculating complex energies associated with cavity resonances.Comment: Accepted in PR
    • 

    corecore